Chapter 1

Vector Algebra

1.1 Definitions

A wvector consists of two components:  magnifude and  direchion
[e.g. torce. velocity, pressure)

A scalar consists of  mmgmetnde  only

(@.g. mass, charge, densitv)

1.2 Vector Algebra

b b b

=G+(-h)

Figure 1.1: Vector algebra

=

i+bh = b+a

d+(f+d = (@+d)+d
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1.3 Components of Vectors

Uanally vectors are expressed according to coordinate svstem. Each vector can
be expressed in terms of components.

The most common coordinate svstem: Cartesian

d=d;+ da, -+ d;

Magnitude of @ = |@] = a,

-
a = .III."-uf. | uﬁ b ool
o= — -
@€ = ;+dy
i = U"r'rf 1 rrg,
- iy = deosg o, = &g
d X ' '
A 3 "-‘I'y
tang = —
i

Figure 1.2: & measured anti-clockwise
from position r-axis

Unit vectors bhave magnitude of 1

| =1

i B unit vector along @ divection
bl
i 3 & areunit vectors along
r % 2z dircctions

A=t i+, j+ak

Other coordinate systems:



1.3. COMPONENTS OF VECTORS

1. Polar Coordinate:

-

Figure 1.3: Polar Coordinates

2. Cwlindrical Coordinates:

ﬁ'_ﬂ,:l"+u,;;.|ﬁ.'+n:f

v originated from nearest point on
g-aztis {Point 07

Figure 1.4: Cyvlindrical Coordinates

3. Bpherical Coordinates:

0= T agl - a,m

¢ oorigimated fromm Origin O

Figure 1.5: Spherical Coordinates
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1.4 Multiplication of Vectors

1. Scalar multiplication:

It fi=mm1 i &, @ are vectors; m is a scalar
then b=m a {Relation between magnituds)
fo=man :
E ; } Components also follow relation
b =1l ity
l1.8. - 3 a
g = iy t dy. g5 &, K
mE = ma, ¢ + ma, j + wma; k

2. Dot Product {Scalar Produet):

a-bh= il - |1::.| eI S

Hesult is always a scalar. Tt can be pos-

=
I

# b =) itive or negative depending on @
' E Z-bh=~ha
Notice: @-b = abcosd = abeosg’
i 1.8, Doesn’t matter how vou measure
a-b=0 angle @ hetween vectors.
b

Figure 1.6: Dat Produact

i o= Ji||i] cosl® =1-1-1=1
107 = [i|jlcosBF =1-1-0=10
i= _.' _.l k=1
j jok=k-i=10

It' ﬂ_rr'ﬁ I'J:g._lf—"f.-
f=b i+ by g+ bk
then &-8=a.b, +a.h, +a.b,

i -d = || |d] cos)® =a.a=a*

-



1.4. MULTIPLICATION OF VECTORS

3. Cross Product {Vector Product ):

I f=adxh
then ¢ = | = absing

]

dxhEbx=a !

=l

axb=—hxag

S |

—
- -

d=bxa

Figure 1.7: Note: How angle ¢ is mea-

surec

o Direction of cross product determined from mght hard ralde.

o Also. @ = bis 1 to @ and I'.l i.a.
- (=B =0
B {@axBl=0

e IMPORTANT:

I dxa=a-auanl =1 ]

ixil = [illi] sin0® =1-1-0=0
ix gl = [ilj]sin90° =1.1.1=1

ixi ﬁ“” kxk=n0
ixj=k fxk=ikxi=3

; i gk ;
dxh=|a, My @ [= (g b, —a b
by &, b Flog by = a, I'J;::I__,l

Hag by —ay b )k



1.5. VECTOR FIELD (PHYSICS POINT OF VIEW) G

4. Vector identities

Gx(b+d) = dxbsdnd
F-(hnd) = b-(exd) = & (Axb
.'r'x{-i:-rxr:l = [rr'-n:l-!?—{rf-f:-r]r:'

1.5 Vector Field (Physics Point of View)

A vector field Fir. y, 2} is a mathematical funetion which has a vector output
for a posifion input.

(Scalar field L{x, y. z))

1.6 Other Topics

Tangential Vector

Curve C

e i 5

dl

Figure 1.8 ol is & vector that is always tangential to the curve O with mbnitesimal
length dl

Surface Veclor

Surface S

Figure 1.9: 44 is a veetor that is always perpendicular to the surface 5 with
. . : | —
infinitesimal area oo



1.6. OTHER TOPICS

Some uncertainty! [di  versus — di)

T convernt ons;

o Aren formed from a elosed corve

dd Curve C'

£LF

Curve it

Figure 1.10: Direction of da determined from right-hand rule

o Closed surface enclosing a volume

da

ﬁ

Figure 1.11: Direction of did going from inside to outside



Chapter 2

Electric Force & Electric Field

2.1 Electric Force

The electnic force between two charges
qp and g can be described by
Conlomb’s Law.

Fiz = Force on g cxerted by gq

T2

e is the unit vector which locates particle 1 relative to particle 2.
Ty

where Fip =

i.a. .r"|-_:_- — '.f"[ = .r_:_-

» ¢, 4z are electrical charges in umits of Cowlomb(C)

o Charge is quantized
Recall 1 electron carries 1.602 =< 1079

» ¢y = Pormittivity of frec space = 8.85 = 1071202 [ Nm?
[ ¥ W

(1) i, g2 can he either positive or negative.



2.2. THE ELECTRIC FIELD

U

(2) If g1, g2 are of same sign. then the foroe experienced by gy 15 in direction
mway from gy, that s, repulsive.

() Force on qe exerted by q;:

L. il
21 = B T O |
dmeg
BUT:
ryz = rp; = distance between q, qq
. fm _Ta—T1 _ —Tn X
T = — = — = I
21 12
L | a1 Mz
Fog = —Fip Newton's 3rd Law
TEM TH GES:
The total force experienced by charge
in &5 the vector sum of the foroes on g
exerted by other charges.
X

—

Fy = Foree experienced by o
= P:l.l | FHLH f -F'=I.-I e FIL:*.-

PRINCIPLE OF SUPERFOSITION:
— N —i
IITIJ. = E liI.:Il._.'
jm

2.2 The Electric Field

While we need two charges to quantify the electric foree, we define the electric
field for anv single charge distribution to describe its effect on other charges



2.2. THE ELECTRIC FIELD 11
i ."T:. 5 g & =
P 2 Total foree F=F + 5+ + Fy
4 ; The electric field s defined as
2 .-‘-; lh &y - = 3
# 1 gjltln}r—q'—ﬁ
o —0 g
4 j # e ®

(a) F-field due to a single charge g,

(h)

Pqn

F Fromm the definitions of Coulomb®s Law, the
0.i torce experienced at location of g (point P}

3 1 o .
i — L 1
vodmey TR

where ry; 15 the unit vector along the direction from charge g, o g,

Fui = Unit vector from charge ¢; to point P
= 1y {radical unit vector from g,)

—

Recall E = lim E

-':lu—|}
. E-field due to ¢ at point P:

=t 1 a4
Foot & L
"lTi'E‘.“ ?F

where 7} = Vector pointing from ¢ to point P,
thus 7, = Unit vector pointing from ¢; to point P
Note:
(1) E-field is a vector.
(2} Direction of E-field depends on both position of P and sign of 4,

E-field due to syatem of charges:
Principle of Superposition:

In a svatem with N charges, the total E-field due to all charges is the
vector sum of F-field due to mdividual charges.
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(c) Electric Dipole

— g ——
Svstom of equal and epposite charges —q d' + ¢
separated by a distance o,

Figure 2.1: An electric dipole. {Direction of
d from negative to positive charge)

Electric Dipole Moment
= qd = gdd

p=qd
Example: F due to dipole along z-axis
tq |
) o |
B [l S | £
"-!_‘ i I
| P i
e i :
_.r = |
—gq 1
: X :.-.

Consider point P at distance x along the porpendicular axis of the dipole 5

E = E, + E
1 1
{F-held {I'f—ﬁuld
due to +q) due to —gq)

Notice:  Horizontal E-field components of .Ff, and £ cancel ont,

|
: . Net E-field points along the axis oppo-

: k"’ﬁk‘“ﬁ 3 site to the dipole moment vector.

£ . £



2.3, CONTINUOUS CHARGE DISTRIBUTION

Magnitude of E-field = 2E, cos#

! £, or E_ magnitude!
+ i
| — s,
_‘:‘:ﬁﬁh"" r | . 1 i
TR R 2(— —\Jlu:la-ﬂ
S i Imey 12
) =3
a-""'r-r-r‘- l | d : ]
l_t__,.-r' |'t But r= ||II,'|[E} + r*
= 1
P /2
. o Cl:'.ltil'f_‘—'"
m
= 1 " ]I-.I
dmey (2 + (47
P = qd)

HPH:'L:-LI (Wi When = 75 o
; if i ..
A =E A 4 (—e}iE
e 4 (S = 1+ ()]
o Binomial Approximation:

1+y)" =1+ ny ify =1

o . 1
E-field of dipole e s

| Fye i
o Compare with P E-field for single charge

o Result also valid for point PP along any axis with respect to dipole

2.3 Continuous Charge Distribution

E-field at point P due to dy:

1 dy ;
dmey 1R

dF =

charge” distribution
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- E-field due to charge distribution:

ﬁ=[¢§=[

Vol wriee Vol evrae

T

1 dg
dmweg 12
(1) In manv cases, we can take advantage of the symmetry of the svstem to

simplify the integral.

(2) To write down the small charge element dig:

1-IV  dg=Ads A= linear charge density s = small length element
2-) dyg=o0dA o =surface charge density  dA = small area element
3D dg=pdV  p=volume charge density  dl = small volume element.

Example 1: Uniform line of charg:

o =Tl = charge per
I % 8- 'Ef"ﬁ “‘I; i unit length
- Mﬁ""ﬂ X
= = Py

L]
i
L]
]
L]
|

f ]
— = L= -
L
\

(1) Symmetry considered: The E-field from +z and —z directions cancel along
z-direchon, o Only horfzontal E-feld components need to be considered.

(2) For each element of length dz, charge dy = Adz
. Horlzontal E-field at point P due to element d- = 1 hds

|¢'.|'E.'_'| o o= —

Te o i

dFy.
. E-held due to entire line charge at point P

i A

: 1 x
E = — — s

dxey 2

L2
L2

A i}
= Ef-—---:-ic::}ﬁl'?
dmey T2
it




2.3, CONTINUOUS CHARGE DISTRIBUTION

To calculate this integral:
s First, notice that © s Axed. but z, v, @ all varies,

# Change of variable {from z to #)

z=rtanf . dz= rsectd 48
(1)
T = reosh =l
g={ - H=0"
(2} When Lf2

:=Lf2 8=8 wheretand=—"—

B 9
o B A [.f.ﬁﬂ.#rfﬁ'lﬂmﬂ

'I'JT'F|;| _ri* w.i ﬂ'
0
A -::'.:.]
= 2 [—- cos# J8
dmep J
0n
A1
= 2 — = [&in#
ey (s ]l
A 1
= 2. - 111
Amep T
9 A L Li2
a dmen T IIIII._,-_;!_|_|:,|'_]_
1 AL

along r-direction

[mportant limiting cases:

1 AL
Lozl Fi—0 —
dmreg  x?

But AL = Total charse on rod
- Bystem behave like a point charge

T T T O

; imeg x-L

A
T 2mepr

ELECTRIC FIELD DUE TO INFINITELY LONG LINE OF CHARGE
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13

Example 2: Ring of Charge

dlcos 0

. ST

-
_“

E-field at a height
charge of radins &

if

' e
.-{-,_\_—\__l_

above a ring of

(1) Svmmetry considered: For every charge element dy considered. there exists

dgf where the horizontal E field components cancel.
= Overall E-field lies along z-direction

(2) For each element of length oz, charge

e
R T’"’ d = A ds
e T [
J{‘-Vf; " h”’“x_ Linear Circular
=k -f":' | N charge density lemath element
\_ % ,\i 7,
H'm-____ | R__;_ dg = A- R dp, where ¢ is the angle
= i measured on the ring plane
360" =2 radian
180" = radian
- Net E-field along z-axis due to dy:
l it
iafE = —. --g-{:n.uﬂ

dveg T



2.3, CONTINUOUS CHARGE DISTRIBUTION 16

Total E-field = fem

i 4 AR da

= | &

)

Note:  Here in this case, & R and v arc fived as @ varics! BUT we want to
convert r. 8 to /. 2.

-

1 ARe ™

- i
] ¥
dmeg 0 il

i’ Al Rz

E=—-
Iney (2 + K21

along z-axis

BUT:  Al2aR) = total charge on the ring

Example 3: E-ficld from a disk of surface charge density o
o :.!E
Fe

We find the E-field of a disk by
integrating concentric rings of
chargoes.




2.3, CONTINUOUS CHARGE DISTRIBUTION

view from the top:

.-"'"'f HHH.
Fs ",
Total charge of ring { !
| 1
dg = o« | 27T dr ) ll'. r /
Arca of tho ring 1Y f
| lemilad -
R e
I |
— R —=
Recall from Example 2:
L iy =

E-heald from l'il:l.‘-'.i df = __Iﬂ_F“ . [:g 1 ]-3]:1,'2

. j'” mar dr - £
il

dre (22 4 o 2)32

1 [”EW v
dmey Jo [P+ )R

o Change of variable:

B = (2%l = e

°=3

= iy =Frdr = rd'r'u-ér!rr

¢ Change of integration limit:

r=0 ', s=#
r=R , u=224+ R

4mep 1
12
BUT [u'g"h‘trfu l“_i";i = _ Q13
; —Ly

Ay

=4

1
N S S
2‘_”11 (=u"")

1 1 1
= ()

T
= | ] — e
Efn[ vt + R?
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If R % 2z, that 18 if wo have an infinite sheet of charge with charge den-
gty o

e Siolyeo B
2ep [ ,,',.:1+Ru:|

T [! :]
- E'Fu. H’

28,
i
F o / * J N ¥
E I
Efu -_-"-I-.I_ - ; 14 + .-_.-"l-.
P O N Y i

E-field is normal to the charged surface
Figure 2.2: E-field due to an infi-
nite sheet of charge, charge den-
sity = &

): What's the E-field belows the charged sheet? -

2.4 Electric Field Lines

To visualize the electric Reld. we can use a graphical tool called the electrie
field lines.

Conventions:

. The start on posttion charges and end on negative charges.

[

. Dhrechion of E-field at any point s given by tangent of E-held line.

3. Magnitude of E-field at any point is propoctional to numiber of E-fleld lines
per unit area perpendiculor fo the Fnes



2.4 ELECTRIC FIELD LINES

19

Uniferm E-field

r ]

i E E-?
R Aifecrion
fal tangent
AL
Fs o
T
EE
& -
# # P #

airection
of tangont

A

Mon-uniform E-field

= 15
E= 9 =F
dng,r

Infinite sheet of charge

SR aRY!
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A%
E _.'-:; _/H?.nr'_:..!:H"Il:klI has
M vertical
B —component.

E

=}

al poind £3
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2.5 Point Charge in E-field

When we place a charge g in an E-field .E: the force experienced by the charge is

F=qE =mi

Applications: fik-get printer, TV cothoderuy tube.

Example:
Ink particle has mass m, charge g (g < 0 here)
DPaper

Inapauat
S MTRIE

el TS,
b+t bbbt bttt

\E

Drop
Generato

i

Drtlecting
falirtes

Assume that mass of inkdrop 15 small, what's the deflection y of the charge?
Solution:

First. the charge carried by the inkdrop is neglive, 1.e. g < (.

gk
Note:  gF points in opposite direction of E.
L]
Mg
Horizontal motion: Net force =0

oo b=t [E1)
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Vertical motion: lgFE| = |mg]. q is negative,
o Net foree = —gFE = ma {Newton's 2nd Law)

E
T il (2.2)
[

YVertical distance travelled:

| —

1= = s

o

2.6 Dipole in E-field

Consider the force exerted on the dipole in an exfernal E-held:

Assumption: E-field from dipole doesn't affect the external E-feld.

¢ Dipole moment:

B o= r;f.l'_

o Force due to the E-held on +ve
and —ve charge are egual and
opposite tn derechion. Total ex-
ternal torce on dipole = 0,

BUT: There is an external torgue on
the center of the dipole.

ermingder:
Force F oxerts at point P
The [orce _exerts a torgue
T :Into E ¥ = 7= F on point P with
the & respect to point 0.
page

Direction of the torgue vector ¥ is determined from the right-hand rule.
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Refepene: Hallidav Vol.1 Chap 9.1 {(Pg.175)  fergue
Chap 11.7 {Pg.243) work done

Net torgue 7

o direction: clockwise
tordLe

o magnitude:
R OV e
= F-—sin#+ F.- - anf

= gf-dsind
= pEsin#

ba | m

f—ﬁHE

Energy Consideration:
When the dipole 7 rotates off, the E-field does work.

Worke done v external E-field on the dipaole:
dW = —r df

Negative sign here becanse torque by E-field acts to decrease ¢

BUT: Because E-field is a conservative force field ' * . we can define a
potential energy (7} {or the system, so that

| i = —dW |

- For the dipole in external E-field:

il = —dW = pE sinf dff

. L-’L’H}=frf{f _ pr:-:iuHriﬁ'
= —pFoosf+ 17

Ymore to come in Chap.4 of notes
Zref. Halliday Vaol.1 Pg.257, Chap 12.1
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set D[ = 90°) =0,
L= =pE cos 00" 4 LY
Ly=0

*. Potential energy:

U= —pFeost = = E

£ F —;;E
D F=_aF% — +F = .ser:'
B ghped i ' E
g =0 8=0
Torque IrE| = pE Torque EI:| =1
L/ =0 (define) U'=—pE

{based on definition)

Minimum energy
configuration



Chapter 3

Electric Flux and Gauss’ Law

3.1 Electric Flux

Latin: flur = "ln flow™
. . Electric Hux @y reprosents the mumber of E-ficld lines
Graphically: ;
croEsing a4 surface.
A
T =
» =
Mathematically: N
E ’ ’
» w
D, =EA D, =E-A

Reminder; Vector of the area A is perpendicular to the area A

For non-uniform E-field & swrface, direction of the area vector 4 15 not
weilorim.

ifAd = Area vector for
stiall Area element

il A

Surface s



3.1. ELECTRIC FLUX 20
. Electric Hux dhp = 5 dA
Electric flux of £ through surface 8: |dp = [ 5 dA
Jz
[ = BSurface integral over surface S
G
= [Integration of integral over all area elements on surface 5
Example:
§ =hemisphere radius R g1 -t _-a .
H B 4'|TE.|'| . rd s Eiﬂ'l“ﬂ: ’
dAP dAr y
For a hemisphere, d4 = dA7
o Ly
— —_-E-- - r - C ] o _
By fszﬂ'Euﬁ':P (dAF)  (ofiF=1)
. |
- [E aA
. 1
J':H = Surface arca of § - i
5 = =
0

For a closed surfaoe:

Closed surface § =" ——

Recall: Direction of arca vector oA
goes fram inside to oulside of closed
surface 5.
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Electric Hux over closed surface 5 | $e =¢ E.d4
]

5£ = Surface integral over closed surface 8
5

Example:

Electriec fux of l'!hﬂl':l_!;(? q over closed
spherical surface of radius R

= L. ff = ¢ i
E= —_ = — at the surface
dmey 72 e H#
Spherical surface §
Again, dd =dA -
S -
& TR
i rodidr
e T e

a -
I'.I!.r"

'j'-'l'fu R-": ?{-];'
e —

Total surface area of 8 = 4z R*
R
iy
[MPORTANT POINT:
If we remove the spherical svimmetry of closed surface 5, the total number of
E-field lines crossing the surfoce remains the same.
- The electric Hux @z

E el (1 F) over surface § Eis not /¥ dd over surface 5°
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-t:E—SﬁE-a.f{—ﬁE-M—i
Eii
) =

3.2 Gauss' Law

Pp = % E.di=2 for any closed surface S
& o

And i is the net electric charge enclosed in closed surface 5.

o Ganss’ Law iz valid for all charge distribubions and all closed surfaces.
{Gaussian surfaces)

o Coulomb's Law can be derived from Gauss’ Law.

o For system with high order of symamelry, E-field can be easily determined if
we construct Gavszan surfaces with the saome symmedry and applies Ganss'
Liaw

3.3 E-field Calculation with Gauss® Law

(A) Infinite line of charge

Linear charge density: A

Cwvlindrical symmetry.

F-field divects radially outward from the

ro].

Construct a Gaussian surface 5 in the
\‘f shape of a eylinder. making up of a

T dd 5 curved surface S, and the top amd

o bottom circles S5, 5y

Ll ¥
5,7 i
dA

Cramssian
s e

—
" 1

)
1
] (]

Gauss' Law: gg_:-f SdA = Total charge _ AL
H

£ £y
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51§H-:s.4‘—f E-:f.a{+/' ,a"-ri.d.'+f £.di
5 =y 2 :_-'.‘:':.: Ky

-

EldA - ELdd

AL
Hf dd=—
5 £i

S et
Total area of surface 5,

AL
E(2mrl) = —
D
i A (® ith Chapter 2 note)
i, — CHTIJRATT WIIEN L DaptaT i
T : )

e &
E = r
2regr
{B) Infinite sheet of charge
T— O
r /l_
¥ + +
¥ . 7
¥ ¥ 4 Uniform surface charmpe densefy:
+ + - al
- A AT B
S, 4 1 i Claussian Planar symmetry.
i & * ¥ + surface ; ; ;
i "h-—-.;---—_r-- L 453 E-field directs perpendicular to
rmgel f i t the sheet of charge.
d‘ﬁ:‘i Pt ,\B:f'r Construct Gaussian surface S in
+ + g A the shape of a cylinder (pill
= 5 + i T 2 3
4 i i box) of cross-sectional area A,
. P ¥
+ ¥
o i
_+
) E: Aer
Gauss' Law 5£E-rH—-—-
g £

/ E.dAd =0
&1

4 — .
o8B L dA over whole surface 5,

f Eodi+ f E-dd=2EA (E| dAs, E || dAs)
X ."i'd
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Mote: For 55, both E and 4.4, point. up
For 8. both E and d'.-'{, proint down
Aa

ol .
A == = = o { Compare with Chapter 2 note)
n )

(C) Uniformly charged sphere
Total charge =
Spherical symmetry.

[a) For r > H;

Consider a spherical Gaussian surface § of
radius r: -
Enclosed E|dA| 7

chorpe 15 (PR HELHEY

5§ duracc W
e Gauss’ Law: é E-dA= 2
5 1]
56 P
= £
£ éd‘.{l = FE
., "
surface area of § = 4xr?
g .
Jr_::_-irrf.u_ur"'ET : gl s

(b} For r = R:

Foiccliisec:

lvgs g, )

o anssian

;s ©onrtare

Clonsider a spherical Ganssian surface 5% of
radius v < K. then total charge included g is
proportronal fe the volume wnoluded by 5

¢ _ Volume enclosed by 5
¢} Total volume of sphere
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q 1/3 xr =z et
0" 1nkR 1= &=
Cianss Law: &6 E.dd= 8
& fia
73]
E A = ——.
ﬁr : R\l' E4j
e i
surface area of §' = 4ar®
" 1 £)
E= e A forr < R
=1‘F~"t'|:. .HH -
L
]
i
]
]
i
]
]
RI = I
3.4 Gauss’ Law and Conductors
e )
( 1 For wsalated conductors, charges are free
I"xm 5 "|| to move until all charges lie outside the
LY % ;_1-‘ \ surface af the conducior. Also. the E-
G 5, o field at the surface of a conductor is per-
e P pendiculer to il surfoce. (Why?)

Cross-sectional area A

Consider Gaussian surface 5 of shape of cylinder:

-
?§ A
5 i
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BUT / E.-dAd=0 (- ELdA)

=1

/ E.dd =0 [ E = 0 inside corductor )
lr‘i

[ E.dl = E f dA (. E || dA)
o g )

S
Area of S
= 54
A
oo anss” Law = FdA= L
€0

] .
On concductor’'s surface £ = =—
i

BUT, there’s no charge inside conduactors

) I Inside conductors B =10 | Alwys!

Notice:

Surtace charge density on a conductor’s surtace 15 ned wndform

Fxample:
MNote

Conductor with a charge inside
This is pot an isolated svatem (because of the charge inside).

Example:

/

q- .
-—1 oulside

dme, ot

Note: In BOTH cases, £ =
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I. Charge spraved on a conductor sphere:

—-

First, wo know that charges all move
to the surface of conductors.

Total charge=0

{i} For r < R:
Consider Gaussian surface 5,

E-dd=0 { - no charge inside )

Mg
= F =10 everywhere

(1) For r = R
Consider Gaussian surface S):

3{; g.af = 2
5 Eij

For & conductor
o —,

Edai - 2 { EdA| )
e’

. Spherically svmmetric

E.n.

O

1. Conductor sphere with hole inside:



3.4. GAUSS LAW AND CONDUCTORS 34

Consicder Gawssian surface Sy: Total
charge included = 0

o E-field = 0 inside

The E-feld 15 identical to the case of a
solid conductor!!

Conducting materials

removied inside

[II. A long hollow cylindrical conductor:

Crags-section
Examplo:

Inside hollow cvlinder { +2¢ )

Omter radins b

/ Chutside hollow cylinder [ —3q }

{ Inner radins  «©

{ Inner radins  a

Oater radius o

Question:  Find the charge on gach surface of the conductor.

For the inside hollow cvlinder, charges distribute only on the sur-

face.
Inner radins a surface, charge =0
and  Outer radins b surface, charge = +24

For the outside hollow cylinder. charges do pgot distribute onlv on
o bstde.
It's not an isolated system. ([ There are charges ingide!)

Consider Ganssian surface 5 inside the condactor:

E-field always = 0

Need charge —2g9 on radius ¢ sarface to balance the charge of inner
evlinder.
So charge on radius d surface = —g. {Why7)

V. Large sheets of charge:
Total charge () on sheet of area A,



3.4 GAUSS LAW AND CONDUCTORS B
Surface charge density = = E'?{
o
By principle of superposition
Dn lns-UIalﬂr -Dn conductor
[charge sprayed oninsulator)
b 2 1 id
H L [ e .
L |
+ . S
o .
f:. — — i o s ;.':l
H 2, 2z, A 1
+ 4 -
H +
+ +H I+
Lp - b —Q
@ HE®QH © @A e ©
+ | 4
- ] - ] = . =
b - L -
= + o +__|. |
+ - - -
+ - + -
== = I+ o
Region A: F=1 o=
. ;g Q
R B: o, A B =
eon En.-"i l‘.{..r'jn
Region C: =10 E=10



Chapter 4

Electric Potential

4.1 Potential Energy and Conservative Forces

{Read Halliday Vol .1 Chap.12)
Electric foree i2 a conservative force

Path A r2
__.-";H -".-‘:-. —

o d 5 :

J ﬂrfa_____,a-"'g Work done by the electric force £ as a

':'H} 5 = charge moves an infitntesimal distance ds
/{_;X 3 F along Path A = diV
..r’ T
F
1

Note: d# is in the tangent direction of the carve of Path A.
dW = F . d&
- Total work done W by force Fin moving the particle from Point 1 to Point 2

.! -
i1"=[ F-dg
[
A

Path ¢

2
j = Path niegral
|

Fath A
= [Integration over Path A from Point 1 to Point 2.
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DEFINITION: A force is conservative ¢f the work done on a particle by
the force is independent of the path taken.

~. For conservative forces,

2 e ;
f Fodi = / F.dg
| o ]

E\ :

Path A Path B
Poth A —a Let's consider a path starting at point
r.( z I to 2 through Path A and from 2 to 1
/’%’ thromgh Path
1
Path
Work dome = / F.di 4 j Fdy
i 2
Path A Path C
3 -2
= F.dif = F-ds
1 1
Path A Path B

DEFINITION: The work done by a conservative force on a particle when it
moves around o closed path retwrning fo its titial posibion i8 2ero,

MATHEMATICALLY, ¥ x F =D evervwhere for conservative force F

Conclusion: Since the work done by a conservative foree Fois path-independent,
we can define a quantity, potential energy, that depends onlv on the
position of the particle.

Convention: We define potential energy 7 such that

dlf = —W = —j a3

-, For particle moving from 1 to 2

2 ik Z
f AT = Uy = Iy = - / F.di
| ]

where 7, 'y are potential energy at position 1, 2.
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Example:
H r b T Hppast Harge. 9
. t) . miwes from point |
- to 2.
F
2 ]
From defmition: [ -00 = —[ Fdr
1
= —f’ﬁ-ﬁ- (- F | dr)
|
3 1 .
I
- —
. re
dr 1 1 g |™
(- 2 +C) T dmweg T
; 1 1 1
AW =AY = gm (— ——}
direy i g T
Note:

(1) This result is generally true for 2-Dimension or 3-D motion.

(2) If g2 moves away from q.
then ry = ). we have

o It . g are of saome sign,
then AU <0, AW =0
(AW = Wark done by electric repulsioe foree)

o It gy qgo ave of different aign.
then AU =0, AW <D
(AW = Work done by clectric alfractive force)

(3) If g2 moves towards oy,
then re = vy, we have

o [f gy g0 are of same sign,
then A7 0, AW 0

o g, g0 are of different sign,
then AU 0, AW 0
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(4) Note: It is the difference in potential energy that is important.
REFERENCE FOINT: f(r =c0) =0
1 1 1
e -U) = — [:—- —~—-J
oo I ireg q149z i

l

i

I q1
el = — . —
r) dreg 1

If qu, e seme sign, then IF(r) = 0 for all v
If qy. o opposite sign,  then I7(r) < 0 for all ¢

(5) Conservation of Mechanical Enerpy:
For a system of charges with no external force,

E = K + U = Constant
4 N
(Kinetic Energy) (Potential Energy)

o [AE = AK + AU = 0

Potential Energy of A Svstem of Charges

Example: P.E. of 3 charges g1, 92. 4
Start: g1 . mallat r=00c, V=10
Stepl: . Move oy from so to its position = [ =1

Move qq from o0 to new position =

Step2: .
- dwey oo
Move qq from 20 to new position = Total PLE.
Stepd:

- 1 [ 4 s Q:’Ial
dmeg L Ti5 oy

Stepd: What if there are 4 charges?
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4.2 Electric Potential

Congider a charge ¢ at center, we consider it2 effect on test charge o

DEFINITION: We define electric potential Voo that

AdT AW
Al = —J R
fn iy

{ -, ¥V is the P.E. per unit charge)

Similarly, we take V{r = ng) = 0.

Electric Potential is a sealar.
Unit:  Veli (V) = Jowles ! Coulomb

# For a single point charge:
7 1 q
P ) S LN &
r) dweg r
o Epergy Unit: A7 = gAY
plectren = Voll(el) = 1.6 x 10 L
'H_-.F-_l'

charge of electron

Potential For A System of Charges

For a total of N point charges, the po-
temtial Voat any point P can be derived
from the principle of superposition.

Recall that potenmtial due to g at

1
pomt P: 1) = e
dmeg T
. Total potential at point P due to N charges:
V= W +W+---+Vy (principle of superposition)
| N
Lo By
dmeg L T2 T
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N
TP o
dmeg =7

Mote: For £ F, we have a sum of vectors
For V. I7,  we have a sum of scalars

Example: Potential of an electric dipole

F Consider the potential of
1 - " poimt F‘ at distance © = %
. . p from dipale,
; N
o i ey
LTS S V= 1 +q i B
p= ‘F? dmeg |z - %I T+ %

)| 1 . ] i i
rF 5:1 B h = = _;1- T or 2x
- 1 if i il
V' = e |[] o om—— (] —
dmey * [ | 2z ¢ Zr}]
; B ;
V¥ = Recall p = qd
dregx? Hecall.p=géd)
: g .
For a point chargse £ o¢ == o=
= r
" : | i ]
For a dipole E o = Voo =

1
For a quadrupole £ o = Vo —
's

Electric Potential of Continnous Charge Distribution

.._.-"--_-H\"‘H.\_\_ -'-"'-_"'..
- / For anv charge distribution, we write the electri-

" il : < e o ;
. | l:"., cal potential dV due to infinitestimal charge dip:
___. i 1 il
f aV = it
"j:ﬁ'!'" T
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Ve f

rharee

— —

dmep
distribaaion

| dyg

Similar to the previous examples on E-field, for the case of wniform charge

chistributon:

1-I = long rod = dg=A\dz
2D = charee sheet = iy = 7 dA
3-I} = uniformly charged body = dy = pdV

Example (1): Uniformby-charged ring

i

_*P g
3
&
&
&
F. z
I e e —
.___.f-"_'__ = = __\_\-_""\-\._
l!-f-l'f - ﬁ-i--:ﬂ__l_ ;.-.}““'am‘x._
sl et % =4 R Yk
v
- )
s |t
]
Charpd deniziny &

Length of the infinitesimal ring eloment

The integration is around the entire ring.

| B

Tatal chargs on the Vv
ring = A - {27 R)

LIMITING CASE: :3» R =V

= s = Hdf}
charge dg = Ads
= Aidd
A — 1 ﬂ_ | . ARJH.
d7eg T dxey R+
= f dl’
Fug
_ " 1 AR
o Ameg :.-"ﬁ¥+,z!vi
AR -
= if
-lrrr.._-.x.f:?{*} o4 _/4. :
s
1
B (2
—'hrru;ﬁ'i 4 :'j

= Q = Q
|ﬁ{u\.@ dmey|z|




4T

ELECTRIC MOTENTIAL

43

Example (2):

Uniformiy-charged disk

Using the principle of superpo-
gition. we will find the porential
of a disk of uniform charge den-
aity b integrating the potential of

Toial L‘"HTE'E'= 0}
Churge density =g

Ring of radius x:  dq = o7 dA = o (Izzdr)

v o ’J"R 1 alnx dx

Jo dmeq JiE 22
OO diz? + z*)
m/u (% + 22)12

Z WVETR-VE

o lf'.1'|

S I e - Y
7o (V& + R = 2)

==

Ln‘

Reall
b,

w={

Limiting Case:

(1) If |2 = R

JTTR = 1',':3[]:—!?-1}

{
T
——
—_—

a R i)
At larpe 2, V' =~ —— =
5 arge 2 5 3 Teeld]

where € = total charge on disk = o - £ RB?

eornceriire n'rt.',rﬁ-

B i ) 8

dwey r
idimk

r i
S ||

(like a point charae)
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(2) If |z| < R
2
VErRE = R {1 b %ji
3
o If{l-i--éﬁgj
- & o] :2
"’—ETD[ ~ 14 2R
At z=10. L’;fg; Let’s call this ¥
1k
Visy u’Ei |z] 2
& = g -F gl
F{I} Vo |-'F = -lj,-;,'l' 1 fé.‘;]

The key here is that it is the difference between potentials of two points
that is important.
= A convenience reference point to compare in this example iz the
potential of the charged disk.

The important quantity here is

- S E TR (4
Vizs)-W = - R F D

neglected s = <= R

Viz) - Vp = —ﬁ |2l

Fiz)
vy
///\ ag>0=F>0
0 >z
a<0=F <0
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4.3 Relation Between Electric Field E and Elec-

tric Potential V

(A) To get V' from E:
Recall our defimtion of the potential V:

av =AU _ Wa
0 LR

where A" is the change in P.E.; W), is the work done in bringing charge

fo from point 1 to 2.
QEE g

— | F-dF
AV =V, —V; = b £
ik

F = *’J-u'r’f

However, the definition of E-felkd:

2
m-'—v-_.-r.——[ E.d7
1

MNote: The integral on the right hand side of the above can be calculated
along any path from peint [ fe 2. (Path-Independent)

.]'-_'
= |Vp= / E . d7

Convention: 1V, =10

(B) To get E from V-
Again, use the definition of 1

All = AV = —W
Waork done

However,
W = g . AF
-
Eleetrie fatee
Vo V+AY = g F &s
surface surface
(L. Potential = V on the surface) where E, l!':_:fhli‘.' E-field component along
the path As.

gAYV = =g E,As
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For infinitesimal A=,

dl’
&V

el

Mote: (1) Therefore the E-field component along any direcfion is the neg-
tive derivative of the potential along Hhe same direction.
(2) I d& L E, then AV =0

(3} AV 15 biggest /smallest if ds" || E

Generally, for a potential Viz, i, £}, the relation between EIZJ:-_ y,z) and V

15
a1 v =l
T == F,=—-— B =—-
ol . iy : oz
-.-;F {TE are partial derivatives

Fior T!I:J' ¥, 2], everything y, z are treated like a constant and we only
i

take derivative with respect to z.

Example: If V{e.y. 2) =% —=
dx
v
ihy

av
iz
For other co-ordinate svatems

(1) Cylindrical:

i 'F;r = _i{ii
ar
Vir.8.z) Ey = _% . %
v
E_z _‘__\__"

e
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POTENTIAL V

(2} Spherical:

v
E =%
1 av
V[.".l'.'ll-l'.:.ll:l E.-:l = —:'E'E
B = — | r_'-'if
L reind  dd

4

MNote: Caleulating Voinvolves summeation of sealars, which s easier than

adding vectors for caleulating E-field
To find the E-field of a general charge svstem, we first caleulate

V', and then derive E from the partial derivative,

Example: Uniformly charged disk
From potential calenlations:

. m T 5 for a point aloy
= — |/ 2+ 22 — |2 &
v ',._'r,.,;",[ . 1]} the 2-axis

For z2>0, |z]=1=

i 7 |' = l {Compate with

.E.-: = - o = 'ﬁ_r',:l 1 - W Chap.2 notes)

Example: Uniforn electric Held
{e.g. Uniformly charged +ve and —ve plates)

++++++ +

Consider a path going from the —ve L |
plate to the $uve plate & !
Potential at point P, Ve can be deduced : i['f »]_1-
from delinition. | I
. Fo | mel o= g (1 = Patential of
Bl £ = = " & - dé — e [late)
= ﬂ[_E ds) E.d7 pointing
f opposite directions
E ds = Es
Ji
Convenient reference: V. =10
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4.4 Equipotential Surfaces

Equipotential surface is a surface on which the potential s constand.
= (AV =)

E-figld lines

1 +
Vir)=——: T{’l = const

== = gonst

= FEquipotential surfaces are
cireles Jspherieal surfoces

Fi=F, =1

Note: (1} A charge can move freely on an cquipotential surface without any
work done.

(2) The electric field lines must he perpendicwdar to the equipotential
surfaces. [Why?)
On an equipotential surface, V' = constant
=t AV =0 == E.dl = 0. where df is fangent to equipotential surface
E must be perpendicilor to equipotential surfaces

Example: Uniformly charged surface {infinite)

v,
= i
2 Recall V= Iy = =]z
I'| EFL.
T
+ + 4+ + + + + + Potentinl at z = 0

Equipotential surface means

&
V=omst = hZW——|z|=0C
! o 5l

= |z = ronsiont
¥ =F;
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Example: [solated spherical charged conductors

-
P
+ by
i

§ \".
+|r ;f \+

Rocall:
{1} E-field ingide = 0

{2) charge distributed on the
outside of conductors.

(i} Inzide conductor

E=0 = AV =levervwhere in conductor
= V = constant evervwhere in conductor

= The entive conductor is at the same potential

(i1} Outside conductor:

__Q
degr
SE]J‘.H.!I.‘j.[!.-I.l]'..' symnetric (Just like a point charge. )

BUT not true for conductors of arbitrary shape.

Fir)

L]

()
dne, R

O * >

Example: Connected conducting spheres

Two conductors con

g, conducting "\

-'-_-'.
.-"-. 1 o
F r |
| E’EH] 1
1
f
/
-~

o
o |

wire 3
.
e :

nected can be seen as a
single conductor
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Potential evervwhere is identical.

Surface charge density

Potential of radius &, sphere V) = _*lanR
ol
Potential of radius By sphere Vi = — GEH
SERLLy
""'-1 = Vg
B 8 o B0
E| R: iJa Rg
I'“
T = ——
' i
e "

Burface area of radiug Ry aphere

m_m B R

7 q AR
If By = Ry, then oy = oo

And the surface electric field £, = £

For arbitrary shape conductor:

At every point on the conductor,
we fit a eircle. The radins of this
circle 15 the radins of curvature,

Naote

Charge distribution on a conductor does not have to be uniform.




